UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | 775257819 CHEMISTRY Paper 2 Theory May/June 2010 1 hour 30 minutes 5070/23 Candidates answer on the Question Paper. No additional materials are required. #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. #### Section A Answer all questions. Write your answers in the spaces provided in the Question Paper. #### Section B Answer any three questions. Write your answers in the spaces provided in the Question Paper. A copy of the Periodic Table is printed on page 20. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Exam | iner's Use | |-----------|------------| | Section A | | | В7 | | | В8 | | | В9 | | | B10 | | | Total | | This document consists of 17 printed pages and 3 blank pages. DC (NF/KN) 25703 © UCLES 2010 [Turn over ### **Section A** For Examiner's Use Answer **all** the questions in this section in the spaces provided. The total mark for this section is 45. | A1 Choose from the following compounds to answer the questions | |--| |--| BaSO $_4$ CH_4 C_2H_4 C_3H_8 CO_2 $CaCO_3$ CF_3C1 $K_2Cr_2O_7$ $MgSO_4$ NaC1 $ZnSO_4$ Each compound can be used once, more than once or not at all. Which compound | (a) | is responsible for ozone depletion, | | |-----|---|-----| | | | [1] | | (b) | is formed by the bacterial decay of vegetable matter, | | | | | [1] | | (c) | is used to remove sulfur dioxide in flue gas desulfurisation, | | | | | [1] | | (d) | is an insoluble salt, | | | | | [1] | | (e) | is orange in colour, | | | | | [1] | | (f) | decolourises aqueous bromine? | | | | | [1] | [Total: 6] | | another ele | invalantions are in there in the | utor chall of a francium | n atom? | Exami
Us | |-----|-------------|---|---------------------------|---------|-------------| | (a) | поw ma | ny electrons are in there in the c | duter shell of a francium | i atom? | | | | | | | [1] | | | (b) | Complet | te the following table about an at | om of francium. | | | | | | | | | | | | | mass number | 223 | | | | | | proton (atomic) number | | | | | | | number of protons | | | | | | | number of electrons | | | | | | | | | | | | | | number of neutrons | | | | | | | number of neutrons | | [2] | | | (c) | Predict t | | um | [2] | | | (c) | Predict t | number of neutrons two physical properties of franci | um. | [2] | | | (c) | | | | [2] | | | (c) | 1 | two physical properties of franci | | | | | (c) | 1 | two physical properties of franci | | | | | | 1
2 | two physical properties of franci | | | | | (c) | 1 | two physical properties of franci | | | | | | 1 | iwo physical properties of franci | | | | | | 1 | iwo physical properties of franci | | | | | | 1 | iwo physical properties of franci | | | | | | 1 | iwo physical properties of franci | | [2] | | | | 1 | iwo physical properties of franci | | | | [Turn over A3 The diagram below shows apparatus that can be used to investigate the rate of reaction between zinc and hydrochloric acid. For Examiner's Use (a) Write the equation, including state symbols, for the reaction between zinc and hydrochloric acid. [2] **(b)** The graph shows the change in mass that occurs during the reaction between zinc and hydrochloric acid. (i) Explain why the mass decreases during the course of the reaction.[1 (ii) Exactly the same experiment was repeated but with a catalyst added.Sketch on the graph the results that would be obtained in the presence of the catalyst.[2] | (c) | Explain why zinc reacts more slowly with dilute hydrochloric acid than with concentrated hydrochloric acid. | For
Examiner's
Use | |-----|--|--------------------------| | | | | | | | | | | [2] | | | (d) | Explain why hydrochloric acid reacts much faster with zinc powder than with lumps of zinc. | | | | | | | | | | | | [2] | | | (e) | Zinc is added to excess hydrochloric acid. Aqueous sodium hydroxide is added drop by drop to this reaction mixture until it is in excess. Describe what you would observe. | | | | | | | | | | | | [2] | | | | [Total: 11] | | | (a) | | | | | |-----|---|--|-------------------------------|----------| | () | Graphite and diamon electricity but diamon | d are both forms of solid cand does not. | rbon. Explain why graphite o | conducts | | | | | | | | | | | | | | | | | | [2] | | (b) | Explain why solid sod chloride does conduc | ium chloride does not conduc
t electricity. | t electricity whereas aqueous | s sodium | [2] | | (c) | Complete the following | g table about electrolysis usir | ng inert graphite electrodes. | \neg | | | electrolyte | product at cathode | product at anode | | | | molten lead(II) | | | | | | bromide | | | | | | | copper | | | | ; | bromide
aqueous copper(II) | copper | oxygen | _ | | ; | bromide
aqueous copper(II)
sulfate | copper | oxygen | [3] | | ; | bromide aqueous copper(II) sulfate dilute sulfuric acid | copper copper | oxygen | [3] | | ; | bromide aqueous copper(II) sulfate dilute sulfuric acid Describe one comme | | | | | ; | bromide aqueous copper(II) sulfate dilute sulfuric acid Describe one comme | rcial use of electrolysis. | | | | ; | bromide aqueous copper(II) sulfate dilute sulfuric acid Describe one comme use | rcial use of electrolysis. | | | | ; | bromide aqueous copper(II) sulfate dilute sulfuric acid Describe one comme use | rcial use of electrolysis. | | | **A5** Ethanol, C₂H₅OH, can be manufactured by two different processes. process 1 - the catalysed addition of steam to ethene process 2 – the fermentation of glucose (a) Name the type of reaction used to manufacture **ethene**. **(b) (i)** Write the equation for process **1**. [1] Suggest the name of the alcohol made when the alkene C₃H₆ reacts with steam in the presence of a catalyst.[1] (c) The equation for process 2 is shown below. $C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(aq) + 2CO_2(g)$ Describe **two** essential conditions required for efficient fermentation.[2] Suggest one advantage of manufacturing ethanol by process 2 rather than by process 1.[1] (d) Process 2 makes an aqueous solution of ethanol. Suggest a method of purification that can be used to remove water from the aqueous ethanol. (e) Describe a chemical test which could be used to positively identify the carbon dioxide formed during fermentation. [Total: 8] A6 Plastics are made of macromolecules called polymers. In the middle of the Pacific Ocean there is a huge area of water that is contaminated with small bits of plastics. The waste plastics have been washed away from coastlines. For Examiner's Use (a) Part of the structure of one of the polymers found in the ocean is shown below. | | (i) | Name | this type | of polymer. | |--|-----|------|-----------|-------------| |--|-----|------|-----------|-------------| | [4] | |-----| | 111 | | г.л | (ii) Draw the structure of the monomer used in the manufacture of this polymer. | | (iii) | Explain why this polymer is described as a saturated hydrocarbon. | | |-----|-------|---|-------| | (b) | Sug | gest why this polymer is not destroyed in water. | . [1] | | | | | 1 | [Total: 4] [1] ## **BLANK PAGE** ## **Section B** For Examiner's Use Answer three questions from this section in the spaces provided. The total mark for this section is 30. | В7 | Hydrazine, N ₂ H ₄ , is a liquid that has been used as a rocket fuel. It reacts with oxygen as | |----|--| | | shown in the equation. | $$N_2H_4 + O_2 \rightarrow N_2 + 2H_2O$$ | This | s rea | ction is highly exothermic. | |------|-------|--| | (a) | Sug | gest why the combustion of hydrazine has very little environmental impact. | | (b) | | lain, in terms of the energy changes which occur during bond breaking and bond hing, why the combustion of hydrazine is exothermic. | | | | | | (c) | (i) | Calculate the volume of oxygen, measured at room temperature and pressure, needed to completely combust 1.00 tonne of hydrazine. [One tonne is 10 ⁶ grams. One mole of any gas at room temperature and pressure occupies a volume of 24 dm ³ .] | | | | | | | | volume of oxygen = dm ³ [3] | | | (ii) | A rocket burns hydrazine in an atmosphere of oxygen. Both hydrazine and oxygen are stored in the rocket as liquids. Suggest why oxygen is stored as a liquid rather than as a gas. | | | | [1] | | (u) | nyurazine, N ₂ n ₄ , nas similai chemicai properties to ammonia. | | | | | | | | | | | | | | |-----|--|---|-------------------|--|--|--|--|--|--|--|--|--|--|--| | | (i) | Hydrazine reacts with hydrochloric acid. Suggest the formula of the product of this reaction. | Examiner's
Use | | | | | | | | | | | | | | | [1] | | | | | | | | | | | | | | | (ii) | Hydrazine is a covalent compound. Draw a 'dot-and-cross' diagram for hydrazine. | | | | | | | | | | | | | [2] [Total: 10] **B8** An ester is made from a carboxylic acid and an alcohol. | For | |------------| | Examiner's | | HSP | The carboxylic acid has the molecular formula $C_4H_8O_2$. Analysis of the alcohol shows it has the following percentage composition by mass: 52.2% carbon; 13.0% hydrogen; 34.8% oxygen. | (a) | (i) | | [4] | |---------------------|-------|---|-----| | | (ii) | Draw a possible structure for the carboxylic acid. | ניו | | | | | | | | | | | | | | | [1] | | | (iii) | What is the empirical formula for the carboxylic acid? | [1] | | (b) | Cald | culate the empirical formula for the alcohol. | | | | | | | | | | | | | (0) | | Name the actor formed when othered reacts with othereis acid | [2] | | (c) | (i) | Name the ester formed when ethanol reacts with ethanoic acid. | [1] | | | (ii) | Suggest one commercial use of this ester. | [1] | |) | iery | viene is a polyester used to make clothing materials. | For | |---|------|---|-------------------| | | (i) | Draw the partial structure of <i>Terylene</i> . Include all the atoms and all the bonds in the ester linkage. | Examiner's
Use | [2] | | | | (ii) | Which type of natural macromolecule contains the ester linkage? | | | | | [1] | | | | | [Total: 10] | | | В9 | - | rogen and iodine react together to form hydrogen iodide in a reversible redox reaction. forward reaction is endothermic. | |----|-----|---| | | | $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ $\Delta H = +53 \text{ kJ mol}^{-1}$ | | | Hyd | rogen and hydrogen iodide are colourless gases whereas iodine gas is purple. | | | (a) | What is meant by the term redox reaction? | | | | [1] | | | (b) | A mixture of $H_2(g)$, $I_2(g)$ and $HI(g)$ are in dynamic equilibrium at a pressure of 2 atmospheres and 200 °C. | | | | The temperature of the mixture is increased to 500 °C but the pressure remains unchanged. Explain why the mixture becomes less purple in colour. | | | | | | | | | | | | [3] | | | (c) | Calculate the maximum mass of hydrogen iodide that can be made from 45.3g of hydrogen. | maximum mass of hydrogen iodide = g [3] | (d) | Hyd | rogen iodide is dissolved in water to make solution X . | For | |-----|------|--|---------------| | | (i) | X is acidified with dilute nitric acid and then aqueous lead(II) nitrate is added. A yellow precipitate is formed. Write an ionic equation, including state symbols, for this reaction. | Examin
Use | | | | [2] | | | | (ii) | A small volume of acidified potassium manganate(VII) is added to X . The solution changes colour to orange-brown. From this description what can you deduce about the chemical properties of X ? | | | | | [1] | | | | | [Total: 10] | | | B10 | | | rs are used to promote plant growth and increase crop yield. rtilisers are potassium chloride, potassium nitrate and ammonium phosphate. | |-----|-----|------|--| | | (a) | | assium nitrate is a soluble salt that can be prepared by reaction between an acid and alkali. | | | | (i) | Write an equation for the reaction of an acid with an alkali to prepare potassium chloride. | | | | | [1] | | | | (ii) | Describe the essential experimental details of this preparation of solid potassium chloride. | (b) | Δmr | monium phosphate is an ionic compound containing the phosphate ion, PO_4^{3-} . | | | (5) | (i) | Write the formula for ammonium phosphate. | | | | (') | [1] | | | | (ii) | Calculate the percentage by mass of nitrogen in ammonium phosphate. | | | | | | | | | | | | | | | | % by mass = [2] | (c) | | armer adds excess calcium hydroxide to react with hydrogen ions in acidic soils. He adds fertiliser to increase the nitrogen content of the soil. | |-----|------|---| | | (i) | Write an ionic equation to show the neutralisation of hydrogen ions by solid calcium hydroxide. | | | | [1] | | | (ii) | Suggest why the farmer should use potassium nitrate rather than ammonium phosphate to increase the nitrogen content of the soil. | | | | | | (d) | | cientist believes a water sample is contaminated by potassium nitrate. | | | | | | | | | | | | | | | | rol | | | | [2] | | | | [Total: 10] | ## **BLANK PAGE** ### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. DATA SHEET The Periodic Table of the Elements | | | 0 | | _ | 20 | Ne | Neon
10 | 40 | Ā | Argon
18 | 84 | ž | Krypton
36 | 131 | Xe | Xenon
54 | 222 | Ru | Radon
86 | | | | 175 | Γľ | Lutetium
71 | 260 | ۲ | Lawrencium
103 | |------------------------------------|-------|----------|------------|---------------|----|----|----------------|------|----------|------------------|----|-----|-----------------|-----|----------|------------------|-----|----|-------------------|-----|----|------|---------------------------|--------------------------|--------------------|--------------------------|-------------------|----------------------------| | | | = | | 2 | 19 | ш | Fluorine 1 | 35.5 | CI | Chlorine 1 | 80 | Ŗ | Bromine 35 | 127 | _ | lodine 53 | 210 | Ą | Astatine 85 | | | | 173 | Υp | Ytterbium 70 7 | 259 | °N | Nobelium
102 | | | | 5 | | | 16 | 0 | Oxygen 8 | 32 | တ | | 62 | Se | Selenium
34 | 128 | <u>e</u> | Tellurium
52 | 509 | 8 | Polonium
84 | | | | 169 | T
E | | 258 | Md | Mendelevium | | | | > | | | 14 | z | Nitrogen 7 | 31 | _ | Phosphorus
15 | 75 | As | Arsenic
33 | 122 | | Antimony
51 | | Ξ | Bismuth
83 | | | • | 167 | ш | Erbium
68 | 257 | Fm | Fermium
100 | | | | 2 | | | 12 | ပ | Carbon
6 | 28 | Si | Silicon
14 | 73 | Ge | Germanium
32 | 119 | Sn | Tin
50 | 207 | Ъ | Lead
82 | | | | 165 | 웃 | Holmium
67 | 252 | Es | Einsteinium
99 | | | | = | | | 1 | മ | Boron
5 | 27 | ΡI | Aluminium
13 | 70 | Ga | Gallium
31 | 115 | In | Indium
49 | 204 | 11 | Thallium
81 | | | | 162 | ۵ | Dysprosium
66 | 251 | ర | Californium
98 | | ts | | | | | | | | | | | | Zn | Zinc
30 | 112 | ပ္ပ | Cadmium
48 | 201 | Hg | Mercury
80 | | | | 159 | Тр | Terbium
65 | 247 | BK | Berkelium
97 | | Elemen | | | | | | | | | | | 64 | చె | Copper
29 | 108 | Ag | | 197 | Αn | Gold
79 | | | | 157 | P
G | Gadolinium
64 | 247 | Cu | Curium
96 | | The Periodic Table of the Elements | Group | | | | | | | | | | 29 | Z | Nickel
28 | 106 | Pd | Palladium
46 | 195 | ፈ | Platinum
78 | | | | 152 | En | Europium
63 | 243 | Am | Americium
95 | | odic Tabl | | | | | 1 | | | | | | 69 | ပိ | Cobalt
27 | 103 | Rh | Rhodium
45 | 192 | ŀ | Iridium
77 | | | | 150 | Sm | Samarium
62 | 244 | Pn | Plutonium
94 | | he Peric | | | - I | Hydrogen
1 | | | | | | | 56 | Fe | Iron
26 | 101 | Ru | Ruthenium
44 | 190 | os | Osmium
76 | | | | 147 | Pm | Promethium
61 | 237 | ď | Neptunium
93 | | _ | | | | | | | | | | | 55 | M | Manganese
25 | | ည | Technetium
43 | 186 | Re | Rhenium
75 | | | | 144 | | Neodymium
60 | 238 | - | Uranium
92 | | | | | | | | | | | | | 52 | ပ် | Chromium
24 | 96 | Mo | Molybdenum
42 | 184 | > | Tungsten
74 | | | | 141 | ቯ | Praseodymium
59 | 231 | Ра | Protactinium
91 | | | | | | | | | | | | | 51 | > | Vanadium
23 | 93 | QN
Q | Niobium
41 | 181 | Б | Tantalum
73 | | | | 140 | ပီ | Cerium
58 | 232 | Т | Thorium
90 | | | | | | | | | | | | | 48 | F | Titanium
22 | 91 | Zr | Zirconium
40 | 178 | Ξ | Hafnium
72 | | | | | | | nic mass | loqu | ton) number | | | | | | | | | | ı | | | 45 | လွ | Scandium
21 | 88 | > | Yttrium
39 | 139 | La | Lanthanum
57 * | 227 | Ϋ́ | 89 + | oid series | series |) | a = relative atomic mass | X = atomic symbol | b = atomic (proton) number | | | | = | | | 6 | Be | Beryllium
4 | 24 | Mg | Magnesium
12 | 40 | င္မ | 8 | 88 | | Strontium
38 | 137 | Ba | Barium
56 | 226 | Ra | 88 | * 58–71 Lanthanoid series | + 90–103 Actinoid series | | a | × | 9 | | | | _ | | | 7 | = | Lithium 3 | 23 | Na | Sodium
11 | 39 | ¥ | Potassium
19 | 85 | Rb | Rubidium
37 | 133 | S | Caesium
55 | 223 | Ļ | 87 | * 58–71 | + 90–10 | ? [
}
- | | Key | ٩ | The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).